Paper Reading AI Learner

Code Representation Learning with Pr'ufer Sequences

2021-11-14 07:27:38
Tenzin Jinpa, Yong Gao

Abstract

An effective and efficient encoding of the source code of a computer program is critical to the success of sequence-to-sequence deep neural network models for tasks in computer program comprehension, such as automated code summarization and documentation. A significant challenge is to find a sequential representation that captures the structural/syntactic information in a computer program and facilitates the training of the learning models. In this paper, we propose to use the Prüfer sequence of the Abstract Syntax Tree (AST) of a computer program to design a sequential representation scheme that preserves the structural information in an AST. Our representation makes it possible to develop deep-learning models in which signals carried by lexical tokens in the training examples can be exploited automatically and selectively based on their syntactic role and importance. Unlike other recently-proposed approaches, our representation is concise and lossless in terms of the structural information of the AST. Empirical studies on real-world benchmark datasets, using a sequence-to-sequence learning model we designed for code summarization, show that our Prüfer-sequence-based representation is indeed highly effective and efficient, outperforming significantly all the recently-proposed deep-learning models we used as the baseline models.

Abstract (translated)

URL

https://arxiv.org/abs/2111.07263

PDF

https://arxiv.org/pdf/2111.07263.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot