Paper Reading AI Learner

Stochastic Gradient Line Bayesian Optimization: Reducing Measurement Shots in Optimizing Parameterized Quantum Circuits

2021-11-15 18:00:14
Shiro Tamiya, Hayata Yamasaki

Abstract

Optimization of parameterized quantum circuits is indispensable for applications of near-term quantum devices to computational tasks with variational quantum algorithms (VQAs). However, the existing optimization algorithms for VQAs require an excessive number of quantum-measurement shots in estimating expectation values of observables or iterating updates of circuit parameters, whose cost has been a crucial obstacle for practical use. To address this problem, we develop an efficient framework, \textit{stochastic gradient line Bayesian optimization} (SGLBO), for the circuit optimization with fewer measurement shots. The SGLBO reduces the cost of measurement shots by estimating an appropriate direction of updating the parameters based on stochastic gradient descent (SGD) and further by utilizing Bayesian optimization (BO) to estimate the optimal step size in each iteration of the SGD. We formulate an adaptive measurement-shot strategy to achieve the optimization feasibly without relying on precise expectation-value estimation and many iterations; moreover, we show that a technique of suffix averaging can significantly reduce the effect of statistical and hardware noise in the optimization for the VQAs. Our numerical simulation demonstrates that the SGLBO augmented with these techniques can drastically reduce the required number of measurement shots, improve the accuracy in the optimization, and enhance the robustness against the noise compared to other state-of-art optimizers in representative tasks for the VQAs. These results establish a framework of quantum-circuit optimizers integrating two different optimization approaches, SGD and BO, to reduce the cost of measurement shots significantly.

Abstract (translated)

URL

https://arxiv.org/abs/2111.07952

PDF

https://arxiv.org/pdf/2111.07952.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot