Paper Reading AI Learner

Spatio-Temporal Split Learning for Autonomous Aerial Surveillance using Urban Air Mobility Networks

2021-11-15 01:39:31
Yoo Jeong Ha, Soyi Jung, Jae-Hyun Kim, Marco Levorato, Joongheon Kim

Abstract

Autonomous surveillance unmanned aerial vehicles (UAVs) are deployed to observe the streets of the city for any suspicious activities. This paper utilizes surveillance UAVs for the purpose of detecting the presence of a fire in the streets. An extensive database is collected from UAV surveillance drones. With the aid of artificial intelligence (AI), fire stations can swiftly identify the presence of a fire emerging in the neighborhood. Spatio-temporal split learning is applied to this scenario to preserve privacy and globally train a fire classification model. Fires are hazardous natural disasters that can spread very quickly. Swift identification of fire is required to deploy firefighters to the scene. In order to do this, strong communication between the UAV and the central server where the deep learning process occurs is required. Improving communication resilience is integral to enhancing a safe experience on the roads. Therefore, this paper explores the adequate number of clients and data ratios for split learning in this UAV setting, as well as the required network infrastructure.

Abstract (translated)

URL

https://arxiv.org/abs/2111.11856

PDF

https://arxiv.org/pdf/2111.11856.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot