Paper Reading AI Learner

EAGAN: Efficient Two-stage Evolutionary Architecture Search for GANs

2021-11-30 03:28:09
Guohao Ying, Xin He, Bin Gao, Bo Han, Xiaowen Chu

Abstract

Generative Adversarial Networks (GANs) have been proven hugely successful in image generation tasks, but GAN training has the problem of instability. Many works have improved the stability of GAN training by manually modifying the GAN architecture, which requires human expertise and extensive trial-and-error. Thus, neural architecture search (NAS), which aims to automate the model design, has been applied to search GANs on the task of unconditional image generation. The early NAS-GAN works only search generators for reducing the difficulty. Some recent works have attempted to search both generator (G) and discriminator (D) to improve GAN performance, but they still suffer from the instability of GAN training during the search. To alleviate the instability issue, we propose an efficient two-stage evolutionary algorithm (EA) based NAS framework to discover GANs, dubbed \textbf{EAGAN}. Specifically, we decouple the search of G and D into two stages and propose the weight-resetting strategy to improve the stability of GAN training. Besides, we perform evolution operations to produce the Pareto-front architectures based on multiple objectives, resulting in a superior combination of G and D. By leveraging the weight-sharing strategy and low-fidelity evaluation, EAGAN can significantly shorten the search time. EAGAN achieves highly competitive results on the CIFAR-10 (IS=8.81$\pm$0.10, FID=9.91) and surpasses previous NAS-searched GANs on the STL-10 dataset (IS=10.44$\pm$0.087, FID=22.18).

Abstract (translated)

URL

https://arxiv.org/abs/2111.15097

PDF

https://arxiv.org/pdf/2111.15097.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot