Paper Reading AI Learner

GaTector: A Unified Framework for Gaze Object Prediction

2021-12-07 07:50:03
Binglu Wang, Tao Hu, Baoshan Li, Xiaojuan Chen, Zhijie Zhang

Abstract

Gaze object prediction (GOP) is a newly proposed task that aims to discover the objects being stared at by humans. It is of great application significance but still lacks a unified solution framework. An intuitive solution is to incorporate an object detection branch into an existing gaze prediction method. However, previous gaze prediction methods usually use two different networks to extract features from scene image and head image, which would lead to heavy network architecture and prevent each branch from joint optimization. In this paper, we build a novel framework named GaTector to tackle the gaze object prediction problem in a unified way. Particularly, a specific-general-specific (SGS) feature extractor is firstly proposed to utilize a shared backbone to extract general features for both scene and head images. To better consider the specificity of inputs and tasks, SGS introduces two input-specific blocks before the shared backbone and three task-specific blocks after the shared backbone. Specifically, a novel defocus layer is designed to generate object-specific features for object detection task without losing information or requiring extra computations. Moreover, the energy aggregation loss is introduced to guide the gaze heatmap to concentrate on the stared box. In the end, we propose a novel mDAP metric that can reveal the difference between boxes even when they share no overlapping area. Extensive experiments on the GOO dataset verify the superiority of our method in all three tracks, i.e. object detection, gaze estimation, and gaze object prediction.

Abstract (translated)

URL

https://arxiv.org/abs/2112.03549

PDF

https://arxiv.org/pdf/2112.03549.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot