Paper Reading AI Learner

Spinning Language Models for Propaganda-As-A-Service

2021-12-09 21:48:29
Eugene Bagdasaryan, Vitaly Shmatikov

Abstract

We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view, but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model would output positive summaries of any text that mentions the name of some individual or organization. Model spinning enables propaganda-as-a-service. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy them to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models. In technical terms, model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary (e.g., positive sentiment). To demonstrate feasibility of model spinning, we develop a new backdooring technique. It stacks the adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models maintain their accuracy metrics while satisfying the adversary's meta-task. In supply chain attack the spin transfers to downstream models. Finally, we propose a black-box, meta-task-independent defense to detect models that selectively apply spin to inputs with a certain trigger.

Abstract (translated)

URL

https://arxiv.org/abs/2112.05224

PDF

https://arxiv.org/pdf/2112.05224.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot