Paper Reading AI Learner

FineFool: Fine Object Contour Attack via Attention

2018-12-01 12:58:56
Jinyin Chen, Haibin Zheng, Hui Xiong, Mengmeng Su

Abstract

Machine learning models have been shown vulnerable to adversarial attacks launched by adversarial examples which are carefully crafted by attacker to defeat classifiers. Deep learning models cannot escape the attack either. Most of adversarial attack methods are focused on success rate or perturbations size, while we are more interested in the relationship between adversarial perturbation and the image itself. In this paper, we put forward a novel adversarial attack based on contour, named FineFool. Finefool not only has better attack performance compared with other state-of-art white-box attacks in aspect of higher attack success rate and smaller perturbation, but also capable of visualization the optimal adversarial perturbation via attention on object contour. To the best of our knowledge, Finefool is for the first time combines the critical feature of the original clean image with the optimal perturbations in a visible manner. Inspired by the correlations between adversarial perturbations and object contour, slighter perturbations is produced via focusing on object contour features, which is more imperceptible and difficult to be defended, especially network add-on defense methods with the trade-off between perturbations filtering and contour feature loss. Compared with existing state-of-art attacks, extensive experiments are conducted to show that Finefool is capable of efficient attack against defensive deep models.

Abstract (translated)

URL

https://arxiv.org/abs/1812.01713

PDF

https://arxiv.org/pdf/1812.01713.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot