Paper Reading AI Learner

Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

2021-12-28 17:36:58
Weiran Lin, Keane Lucas, Lujo Bauer, Michael K. Reiter, Mahmood Sharif

Abstract

Minimal adversarial perturbations added to inputs have been shown to be effective at fooling deep neural networks. In this paper, we introduce several innovations that make white-box targeted attacks follow the intuition of the attacker's goal: to trick the model to assign a higher probability to the target class than to any other, while staying within a specified distance from the original input. First, we propose a new loss function that explicitly captures the goal of targeted attacks, in particular, by using the logits of all classes instead of just a subset, as is common. We show that Auto-PGD with this loss function finds more adversarial examples than it does with other commonly used loss functions. Second, we propose a new attack method that uses a further developed version of our loss function capturing both the misclassification objective and the $L_{\infty}$ distance limit $\epsilon$. This new attack method is relatively 1.5--4.2% more successful on the CIFAR10 dataset and relatively 8.2--14.9% more successful on the ImageNet dataset, than the next best state-of-the-art attack. We confirm using statistical tests that our attack outperforms state-of-the-art attacks on different datasets and values of $\epsilon$ and against different defenses.

Abstract (translated)

URL

https://arxiv.org/abs/2112.14232

PDF

https://arxiv.org/pdf/2112.14232.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot