Paper Reading AI Learner

SPIDER: Searching Personalized Neural Architecture for Federated Learning

2021-12-27 23:42:15
Erum Mushtaq, Chaoyang He, Jie Ding, Salman Avestimehr

Abstract

Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server due to privacy and regulatory restrictions. Recent advancements in FL use predefined architecture-based learning for all the clients. However, given that clients' data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, in this work, we introduce SPIDER, an algorithmic framework that aims to Search Personalized neural architecture for federated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture-homogeneous global model (Supernet) in a generic FL manner and one architecture-heterogeneous local model that is connected to the global model by weight sharing-based regularization (2) achieving architecture-heterogeneous local model by a novel neural architecture search (NAS) method that can select optimal subnet progressively using operation-level perturbation on the accuracy value as the criterion. Experimental results demonstrate that SPIDER outperforms other state-of-the-art personalization methods, and the searched personalized architectures are more inference efficient.

Abstract (translated)

URL

https://arxiv.org/abs/2112.13939

PDF

https://arxiv.org/pdf/2112.13939.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot