Paper Reading AI Learner

Semantics-Recovering Decompilation through Neural Machine Translation

2021-12-22 07:08:08
Ruigang Liang, Ying Cao, Peiwei Hu, Jinwen He, Kai Chen

Abstract

Decompilation transforms low-level program languages (PL) (e.g., binary code) into high-level PLs (e.g., C/C++). It has been widely used when analysts perform security analysis on software (systems) whose source code is unavailable, such as vulnerability search and malware analysis. However, current decompilation tools usually need lots of experts' efforts, even for years, to generate the rules for decompilation, which also requires long-term maintenance as the syntax of high-level PL or low-level PL changes. Also, an ideal decompiler should concisely generate high-level PL with similar functionality to the source low-level PL and semantic information (e.g., meaningful variable names), just like human-written code. Unfortunately, existing manually-defined rule-based decompilation techniques only functionally restore the low-level PL to a similar high-level PL and are still powerless to recover semantic information. In this paper, we propose a novel neural decompilation approach to translate low-level PL into accurate and user-friendly high-level PL, effectively improving its readability and understandability. Furthermore, we implement the proposed approaches called SEAM. Evaluations on four real-world applications show that SEAM has an average accuracy of 94.41%, which is much better than prior neural machine translation (NMT) models. Finally, we evaluate the effectiveness of semantic information recovery through a questionnaire survey, and the average accuracy is 92.64%, which is comparable or superior to the state-of-the-art compilers.

Abstract (translated)

URL

https://arxiv.org/abs/2112.15491

PDF

https://arxiv.org/pdf/2112.15491.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot