Paper Reading AI Learner

FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

2022-01-03 17:22:38
Javier Hernandez-Ortega, Julian Fierrez, Ignacio Serna, Aythami Morales

Abstract

In this paper we develop FaceQgen, a No-Reference Quality Assessment approach for face images based on a Generative Adversarial Network that generates a scalar quality measure related with the face recognition accuracy. FaceQgen does not require labelled quality measures for training. It is trained from scratch using the SCface database. FaceQgen applies image restoration to a face image of unknown quality, transforming it into a canonical high quality image, i.e., frontal pose, homogeneous background, etc. The quality estimation is built as the similarity between the original and the restored images, since low quality images experience bigger changes due to restoration. We compare three different numerical quality measures: a) the MSE between the original and the restored images, b) their SSIM, and c) the output score of the Discriminator of the GAN. The results demonstrate that FaceQgen's quality measures are good estimators of face recognition accuracy. Our experiments include a comparison with other quality assessment methods designed for faces and for general images, in order to position FaceQgen in the state of the art. This comparison shows that, even though FaceQgen does not surpass the best existing face quality assessment methods in terms of face recognition accuracy prediction, it achieves good enough results to demonstrate the potential of semi-supervised learning approaches for quality estimation (in particular, data-driven learning based on a single high quality image per subject), having the capacity to improve its performance in the future with adequate refinement of the model and the significant advantage over competing methods of not needing quality labels for its development. This makes FaceQgen flexible and scalable without expensive data curation.

Abstract (translated)

URL

https://arxiv.org/abs/2201.00770

PDF

https://arxiv.org/pdf/2201.00770.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot