Paper Reading AI Learner

Weakly Supervised Semantic Segmentation of Remote Sensing Images for Tree Species Classification Based on Explanation Methods

2022-01-19 09:32:48
Steve Ahlswede, Nimisha Thekke-Madam, Christian Schulz, Birgit Kleinschmit, Begüm Demir

Abstract

The collection of a high number of pixel-based labeled training samples for tree species identification is time consuming and costly in operational forestry applications. To address this problem, in this paper we investigate the effectiveness of explanation methods for deep neural networks in performing weakly supervised semantic segmentation using only image-level labels. Specifically, we consider four methods:i) class activation maps (CAM); ii) gradient-based CAM; iii) pixel correlation module; and iv) self-enhancing maps (SEM). We compare these methods with each other using both quantitative and qualitative measures of their segmentation accuracy, as well as their computational requirements. Experimental results obtained on an aerial image archive show that:i) considered explanation techniques are highly relevant for the identification of tree species with weak supervision; and ii) the SEM outperforms the other considered methods. The code for this paper is publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2201.07495

PDF

https://arxiv.org/pdf/2201.07495.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot