Paper Reading AI Learner

Implicit Bias of Projected Subgradient Method Gives Provable Robust Recovery of Subspaces of Unknown Codimension

2022-01-22 15:36:03
Paris V. Giampouras, Benjamin D. Haeffele, René Vidal

Abstract

Robust subspace recovery (RSR) is a fundamental problem in robust representation learning. Here we focus on a recently proposed RSR method termed Dual Principal Component Pursuit (DPCP) approach, which aims to recover a basis of the orthogonal complement of the subspace and is amenable to handling subspaces of high relative dimension. Prior work has shown that DPCP can provably recover the correct subspace in the presence of outliers, as long as the true dimension of the subspace is known. We show that DPCP can provably solve RSR problems in the {\it unknown} subspace dimension regime, as long as orthogonality constraints -- adopted in previous DPCP formulations -- are relaxed and random initialization is used instead of spectral one. Namely, we propose a very simple algorithm based on running multiple instances of a projected sub-gradient descent method (PSGM), with each problem instance seeking to find one vector in the null space of the subspace. We theoretically prove that under mild conditions this approach will succeed with high probability. In particular, we show that 1) all of the problem instances will converge to a vector in the nullspace of the subspace and 2) the ensemble of problem instance solutions will be sufficiently diverse to fully span the nullspace of the subspace thus also revealing its true unknown codimension. We provide empirical results that corroborate our theoretical results and showcase the remarkable implicit rank regularization behavior of PSGM algorithm that allows us to perform RSR without being aware of the subspace dimension.

Abstract (translated)

URL

https://arxiv.org/abs/2201.09079

PDF

https://arxiv.org/pdf/2201.09079.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot