Paper Reading AI Learner

Semantically Video Coding: Instill Static-Dynamic Clues into Structured Bitstream for AI Tasks

2022-01-25 08:06:32
Xin Jin, Ruoyu Feng, Simeng Sun, Runsen Feng, Tianyu He, Zhibo Chen

Abstract

Traditional media coding schemes typically encode image/video into a semantic-unknown binary stream, which fails to directly support downstream intelligent tasks at the bitstream level. Semantically Structured Image Coding (SSIC) framework makes the first attempt to enable decoding-free or partial-decoding image intelligent task analysis via a Semantically Structured Bitstream (SSB). However, the SSIC only considers image coding and its generated SSB only contains the static object information. In this paper, we extend the idea of semantically structured coding from video coding perspective and propose an advanced Semantically Structured Video Coding (SSVC) framework to support heterogeneous intelligent applications. Video signals contain more rich dynamic motion information and exist more redundancy due to the similarity between adjacent frames. Thus, we present a reformulation of semantically structured bitstream (SSB) in SSVC which contains both static object characteristics and dynamic motion clues. Specifically, we introduce optical flow to encode continuous motion information and reduce cross-frame redundancy via a predictive coding architecture, then the optical flow and residual information are reorganized into SSB, which enables the proposed SSVC could better adaptively support video-based downstream intelligent applications. Extensive experiments demonstrate that the proposed SSVC framework could directly support multiple intelligent tasks just depending on a partially decoded bitstream. This avoids the full bitstream decompression and thus significantly saves bitrate/bandwidth consumption for intelligent analytics. We verify this point on the tasks of image object detection, pose estimation, video action recognition, video object segmentation, etc.

Abstract (translated)

URL

https://arxiv.org/abs/2201.10162

PDF

https://arxiv.org/pdf/2201.10162.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot