Paper Reading AI Learner

Neural Architecture Ranker

2022-01-30 04:54:59
Bicheng Guo, Shibo He, Tao Chen, Jiming Chen, Peng Ye

Abstract

Architecture ranking has recently been advocated to design an efficient and effective performance predictor for Neural Architecture Search (NAS). The previous contrastive method solves the ranking problem by comparing pairs of architectures and predicting their relative performance, which may suffer generalization issues due to local pair-wise comparison. Inspired by the quality stratification phenomenon in the search space, we propose a predictor, namely Neural Architecture Ranker (NAR), from a new and global perspective by exploiting the quality distribution of the whole search space. The NAR learns the similar characteristics of the same quality tier (i.e., level) and distinguishes among different individuals by first matching architectures with the representation of tiers, and then classifying and scoring them. It can capture the features of different quality tiers and thus generalize its ranking ability to the entire search space. Besides, distributions of different quality tiers are also beneficial to guide the sampling procedure, which is free of training a search algorithm and thus simplifies the NAS pipeline. The proposed NAR achieves better performance than the state-of-the-art methods on two widely accepted datasets. On NAS-Bench-101, it finds the architectures with top 0.01$\unicode{x2030}$ performance among the search space and stably focuses on the top architectures. On NAS-Bench-201, it identifies the optimal architectures on CIFAR-10, CIFAR-100 and, ImageNet-16-120. We expand and release these two datasets covering detailed cell computational information to boost the study of NAS.

Abstract (translated)

URL

https://arxiv.org/abs/2201.12725

PDF

https://arxiv.org/pdf/2201.12725.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot