Paper Reading AI Learner

Punctuation restoration in Swedish through fine-tuned KB-BERT

2022-02-14 14:39:40
John Björkman Nilsson

Abstract

Presented here is a method for automatic punctuation restoration in Swedish using a BERT model. The method is based on KB-BERT, a publicly available, neural network language model pre-trained on a Swedish corpus by National Library of Sweden. This model has then been fine-tuned for this specific task using a corpus of government texts. With a lower-case and unpunctuated Swedish text as input, the model is supposed to return a grammatically correct punctuated copy of the text as output. A successful solution to this problem brings benefits for an array of NLP domains, such as speech-to-text and automated text. Only the punctuation marks period, comma and question marks were considered for the project, due to a lack of data for more rare marks such as semicolon. Additionally, some marks are somewhat interchangeable with the more common, such as exclamation points and periods. Thus, the data set had all exclamation points replaced with periods. The fine-tuned Swedish BERT model, dubbed prestoBERT, achieved an overall F1-score of 78.9. The proposed model scored similarly to international counterparts, with Hungarian and Chinese models obtaining F1-scores of 82.2 and 75.6 respectively. As further comparison, a human evaluation case study was carried out. The human test group achieved an overall F1-score of 81.7, but scored substantially worse than prestoBERT on both period and comma. Inspecting output sentences from the model and humans show satisfactory results, despite the difference in F1-score. The disconnect seems to stem from an unnecessary focus on replicating the exact same punctuation used in the test set, rather than providing any of the number of correct interpretations. If the loss function could be rewritten to reward all grammatically correct outputs, rather than only the one original example, the performance could improve significantly for both prestoBERT and the human group.

Abstract (translated)

URL

https://arxiv.org/abs/2202.06769

PDF

https://arxiv.org/pdf/2202.06769.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot