Paper Reading AI Learner

Automatic quantification of the LV function and mass: a deep learning approach for cardiovascular MRI

2018-12-14 18:20:39
Ariel H. Curiale, Flavio D. Colavecchia, German Mato

Abstract

Objective: This paper proposes a novel approach for automatic left ventricle (LV) quantification using convolutional neural networks (CNN). Methods: The general framework consists of one CNN for detecting the LV, and another for tissue classification. Also, three new deep learning architectures were proposed for LV quantification. These new CNNs introduce the ideas of sparsity and depthwise separable convolution into the U-net architecture, as well as, a residual learning strategy level-to-level. To this end, we extend the classical U-net architecture and use the generalized Jaccard distance as optimization objective function. Results: The CNNs were trained and evaluated with 140 patients from two public cardiovascular magnetic resonance datasets (Sunnybrook and Cardiac Atlas Project) by using a 5-fold cross-validation strategy. Our results demonstrate a suitable accuracy for myocardial segmentation ($\sim$0.9 Dice's coefficient), and a strong correlation with the most relevant physiological measures: 0.99 for end-diastolic and end-systolic volume, 0.97 for the left myocardial mass, 0.95 for the ejection fraction and 0.93 for the stroke volume and cardiac output. Conclusion: Our simulation and clinical evaluation results demonstrate the capability and merits of the proposed CNN to estimate different structural and functional features such as LV mass and EF which are commonly used for both diagnosis and treatment of different pathologies. Significance: This paper suggests a new approach for automatic LV quantification based on deep learning where errors are comparable to the inter- and intra-operator ranges for manual contouring. Also, this approach may have important applications on motion quantification.

Abstract (translated)

URL

https://arxiv.org/abs/1812.06061

PDF

https://arxiv.org/pdf/1812.06061.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot