Paper Reading AI Learner

Prompt-Learning for Short Text Classification

2022-02-23 08:07:06
Yi Zhu, Xinke Zhou, Jipeng Qiang, Yun Li, Yunhao Yuan, Xindong Wu

Abstract

In the short text, the extreme short length, feature sparsity and high ambiguity pose huge challenge to classification tasks. Recently, as an effective method for tuning Pre-trained Language Models for specific downstream tasks, prompt-learning has attracted vast amount of attention and research. The main intuition behind the prompt-learning is to insert template into the input and convert the text classification tasks into equivalent cloze-style tasks. However, most prompt-learning methods expand label words manually or only consider the class name for knowledge incorporating in cloze-style prediction, which will inevitably incurred omissions and bias in classification tasks. In this paper, we propose a simple short text classification approach that makes use of prompt-learning based on knowledgeable expansion, which can consider both the short text itself and class name during expanding label words space. Specifically, the top $N$ concepts related to the entity in short text are retrieved from the open Knowledge Graph like Probase, and we further refine the expanded label words by the distance calculation between selected concepts and class label. Experimental results show that our approach obtains obvious improvement compared with other fine-tuning, prompt-learning and knowledgeable prompt-tuning methods, outperforming the state-of-the-art by up to 6 Accuracy points on three well-known datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2202.11345

PDF

https://arxiv.org/pdf/2202.11345.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot