Paper Reading AI Learner

R-GCN: The R Could Stand for Random

2022-03-04 16:55:25
Vic Degraeve, Gilles Vandewiele, Femke Ongenae, Sofie Van Hoecke

Abstract

The inception of Relational Graph Convolutional Networks (R-GCNs) marked a milestone in the Semantic Web domain as it allows for end-to-end training of machine learning models that operate on Knowledge Graphs (KGs). R-GCNs generate a representation for a node of interest by repeatedly aggregating parametrised, relation-specific transformations of its neighbours. However, in this paper, we argue that the the R-GCN's main contribution lies in this "message passing" paradigm, rather than the learned parameters. To this end, we introduce the "Random Relational Graph Convolutional Network" (RR-GCN), which constructs embeddings for nodes in the KG by aggregating randomly transformed random information from neigbours, i.e., with no learned parameters. We empirically show that RR-GCNs can compete with fully trained R-GCNs in both node classification and link prediction settings. The implications of these results are two-fold: on the one hand, our technique can be used as a quick baseline that novel KG embedding methods should be able to beat. On the other hand, it demonstrates that further research might reveal more parameter-efficient inductive biases for KGs.

Abstract (translated)

URL

https://arxiv.org/abs/2203.02424

PDF

https://arxiv.org/pdf/2203.02424.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot