Paper Reading AI Learner

Boundary loss for highly unbalanced segmentation

2018-12-17 20:06:50
Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Éric Granger, Jose Dolz, Ismail Ben Ayed

Abstract

Widely used loss functions for convolutional neural network (CNN) segmentation, e.g., Dice or cross-entropy, are based on integrals (summations) over the segmentation regions. Unfortunately, it is quite common in medical image analysis to have highly unbalanced segmentations, where standard losses contain regional terms with values that differ considerably --typically of several orders of magnitude-- across segmentation classes, which may affect training performance and stability. The purpose of this study is to build a boundary loss, which takes the form of a distance metric on the space of contours, not regions. We argue that a boundary loss can mitigate the difficulties of regional losses in the context of highly unbalanced segmentation problems because it uses integrals over the boundary between regions instead of unbalanced integrals over regions. Furthermore, a boundary loss provides information that is complementary to regional losses. Unfortunately, it is not straightforward to represent the boundary points corresponding to the regional softmax outputs of a CNN. Our boundary loss is inspired by discrete (graph-based) optimization techniques for computing gradient flows of curve evolution. Following an integral approach for computing boundary variations, we express a non-symmetric L2 distance on the space of shapes as a regional integral, which avoids completely local differential computations involving contour points. Our boundary loss is the sum of linear functions of the regional softmax probability outputs of the network. Therefore, it can easily be combined with standard regional losses and implemented with any existing deep network architecture for N-D segmentation. Our boundary loss has been validated on two benchmark datasets corresponding to difficult, highly unbalanced segmentation problems: the ischemic stroke lesion (ISLES) and white matter hyperintensities (WMH).

Abstract (translated)

URL

https://arxiv.org/abs/1812.07032

PDF

https://arxiv.org/pdf/1812.07032.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot