Paper Reading AI Learner

A Survey in Adversarial Defences and Robustness in NLP

2022-03-12 11:37:17
Shreya Goyal, Sumanth Doddapaneni, Mitesh M.Khapra, Balaraman Ravindran

Abstract

In recent years, it has been seen that deep neural networks are lacking robustness and are likely to break in case of adversarial perturbations in input data. Strong adversarial attacks are proposed by various authors for computer vision and Natural Language Processing (NLP). As a counter-effort, several defense mechanisms are also proposed to save these networks from failing. In contrast with image data, generating adversarial attacks and defending these models is not easy in NLP because of the discrete nature of the text data. However, numerous methods for adversarial defense are proposed of late, for different NLP tasks such as text classification, named entity recognition, natural language inferencing, etc. These methods are not just used for defending neural networks from adversarial attacks, but also used as a regularization mechanism during training, saving the model from overfitting. The proposed survey is an attempt to review different methods proposed for adversarial defenses in NLP in the recent past by proposing a novel taxonomy. This survey also highlights the fragility of the advanced deep neural networks in NLP and the challenges in defending them.

Abstract (translated)

URL

https://arxiv.org/abs/2203.06414

PDF

https://arxiv.org/pdf/2203.06414.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot