Paper Reading AI Learner

Sample-efficient Iterative Lower Bound Optimization of Deep Reactive Policies for Planning in Continuous MDPs

2022-03-23 19:06:16
Siow Meng Low, Akshat Kumar, Scott Sanner

Abstract

Recent advances in deep learning have enabled optimization of deep reactive policies (DRPs) for continuous MDP planning by encoding a parametric policy as a deep neural network and exploiting automatic differentiation in an end-to-end model-based gradient descent framework. This approach has proven effective for optimizing DRPs in nonlinear continuous MDPs, but it requires a large number of sampled trajectories to learn effectively and can suffer from high variance in solution quality. In this work, we revisit the overall model-based DRP objective and instead take a minorization-maximization perspective to iteratively optimize the DRP w.r.t. a locally tight lower-bounded objective. This novel formulation of DRP learning as iterative lower bound optimization (ILBO) is particularly appealing because (i) each step is structurally easier to optimize than the overall objective, (ii) it guarantees a monotonically improving objective under certain theoretical conditions, and (iii) it reuses samples between iterations thus lowering sample complexity. Empirical evaluation confirms that ILBO is significantly more sample-efficient than the state-of-the-art DRP planner and consistently produces better solution quality with lower variance. We additionally demonstrate that ILBO generalizes well to new problem instances (i.e., different initial states) without requiring retraining.

Abstract (translated)

URL

https://arxiv.org/abs/2203.12679

PDF

https://arxiv.org/pdf/2203.12679.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot