Paper Reading AI Learner

IA-FaceS, Bidirectional Method, Disentangled Attribute Manipulation, Flexible Component Editing

2022-03-24 14:44:56
Wenjing Huang, Shikui Tu, Lei Xu

Abstract

Semantic face editing has achieved substantial progress in recent years. Known as a growingly popular method, latent space manipulation performs face editing by changing the latent code of an input face to liberate users from painting skills. However, previous latent space manipulation methods usually encode an entire face into a single low-dimensional embedding, which constrains the reconstruction capacity and the control flexibility of facial components, such as eyes and nose. This paper proposes IA-FaceS as a bidirectional method for disentangled face attribute manipulation as well as flexible, controllable component editing without the need for segmentation masks or sketches in the original image. To strike a balance between the reconstruction capacity and the control flexibility, the encoder is designed as a multi-head structure to yield embeddings for reconstruction and control, respectively: a high-dimensional tensor with spatial properties for consistent reconstruction and four low-dimensional facial component embeddings for semantic face editing. Manipulating the separate component embeddings can help achieve disentangled attribute manipulation and flexible control of facial components. To further disentangle the highly-correlated components, a component adaptive modulation (CAM) module is proposed for the decoder. The semantic single-eye editing is developed for the first time without any input visual guidance, such as segmentation masks or sketches. According to the experimental results, IA-FaceS establishes a good balance between maintaining image details and performing flexible face manipulation. Both quantitative and qualitative results indicate that the proposed method outperforms the other techniques in reconstruction, face attribute manipulation, and component transfer.

Abstract (translated)

URL

https://arxiv.org/abs/2203.13097

PDF

https://arxiv.org/pdf/2203.13097.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot