Paper Reading AI Learner

WawPart: Workload-Aware Partitioning of Knowledge Graphs

2022-03-28 16:45:39
Amitabh Priyadarshi, Krzysztof J. Kochut

Abstract

Large-scale datasets in the form of knowledge graphs are often used in numerous domains, today. A knowledge graphs size often exceeds the capacity of a single computer system, especially if the graph must be stored in main memory. To overcome this, knowledge graphs can be partitioned into multiple sub-graphs and distributed as shards among many computing nodes. However, performance of many common tasks performed on graphs, such as querying, suffers, as a result. This is due to distributed joins mandated by graph edges crossing (cutting) the partitions. In this paper, we propose a method of knowledge graph partitioning that takes into account a set of queries (workload). The resulting partitioning aims to reduces the number of distributed joins and improve the workload performance. Critical features identified in the query workload and the knowledge graph are used to cluster the queries and then partition the graph. Queries are rewritten to account for the graph partitioning. Our evaluation results demonstrate the performance improvement in workload processing time.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14888

PDF

https://arxiv.org/pdf/2203.14888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot