Paper Reading AI Learner

Conjugate Gradient Method for Generative Adversarial Networks

2022-03-28 04:44:45
Hiroki Naganuma, Hideaki Iiduka

Abstract

While the generative model has many advantages, it is not feasible to calculate the Jensen-Shannon divergence of the density function of the data and the density function of the model of deep neural networks; for this reason, various alternative approaches have been developed. Generative adversarial networks (GANs) can be used to formulate this problem as a discriminative problem with two models, a generator and a discriminator whose learning can be formulated in the context of game theory and the local Nash equilibrium. Since this optimization is more difficult than minimization of a single objective function, we propose to apply the conjugate gradient method to solve the local Nash equilibrium problem in GANs. We give a proof and convergence analysis under mild assumptions showing that the proposed method converges to a local Nash equilibrium with three different learning-rate schedules including a constant learning rate. Furthermore, we demonstrate the convergence of a simple toy problem to a local Nash equilibrium and compare the proposed method with other optimization methods in experiments using real-world data, finding that the proposed method outperforms stochastic gradient descent (SGD) and momentum SGD.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14495

PDF

https://arxiv.org/pdf/2203.14495.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot