Paper Reading AI Learner

Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval

2022-04-05 15:44:27
Robert Litschko, Ivan Vulić, Goran Glavaš

Abstract

State-of-the-art neural (re)rankers are notoriously data hungry which - given the lack of large-scale training data in languages other than English - makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore typically transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all the parameters of a pretrained massively multilingual Transformer (MMT, e.g., multilingual BERT) on English relevance judgments and then deploy it in the target language. In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the task adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. Besides improved transfer performance, these two approaches offer faster ranker training, with only a fraction of parameters being updated compared to full MMT fine-tuning. We benchmark our models on the CLEF-2003 benchmark, showing that our parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while enabling modularity and reducing training times. Further, we show on the example of Swahili and Somali that, for low(er)-resource languages, our parameter-efficient neural re-rankers can improve the ranking of the competitive machine translation-based ranker.

Abstract (translated)

URL

https://arxiv.org/abs/2204.02292

PDF

https://arxiv.org/pdf/2204.02292.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot