Paper Reading AI Learner

Bridging the Gap of AutoGraph between Academia and Industry: Analysing AutoGraph Challenge at KDD Cup 2020

2022-04-06 07:06:48
Zhen Xu, Lanning Wei, Huan Zhao, Rex Ying, Quanming Yao, Wei-Wei Tu, Isabelle Guyon

Abstract

Graph structured data is ubiquitous in daily life and scientific areas and has attracted increasing attention. Graph Neural Networks (GNNs) have been proved to be effective in modeling graph structured data and many variants of GNN architectures have been proposed. However, much human effort is often needed to tune the architecture depending on different datasets. Researchers naturally adopt Automated Machine Learning on Graph Learning, aiming to reduce the human effort and achieve generally top-performing GNNs, but their methods focus more on the architecture search. To understand GNN practitioners' automated solutions, we organized AutoGraph Challenge at KDD Cup 2020, emphasizing on automated graph neural networks for node classification. We received top solutions especially from industrial tech companies like Meituan, Alibaba and Twitter, which are already open sourced on Github. After detailed comparisons with solutions from academia, we quantify the gaps between academia and industry on modeling scope, effectiveness and efficiency, and show that (1) academia AutoML for Graph solutions focus on GNN architecture search while industrial solutions, especially the winning ones in the KDD Cup, tend to obtain an overall solution (2) by neural architecture search only, academia solutions achieve on average 97.3% accuracy of industrial solutions (3) academia solutions are cheap to obtain with several GPU hours while industrial solutions take a few months' labors. Academic solutions also contain much fewer parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2204.02625

PDF

https://arxiv.org/pdf/2204.02625.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot