Paper Reading AI Learner

Recovering Patient Journeys: A Corpus of Biomedical Entities and Relations on Twitter

2022-04-21 08:18:44
Amelie Wührl, Roman Klinger

Abstract

Text mining and information extraction for the medical domain has focused on scientific text generated by researchers. However, their direct access to individual patient experiences or patient-doctor interactions can be limited. Information provided on social media, e.g., by patients and their relatives, complements the knowledge in scientific text. It reflects the patient's journey and their subjective perspective on the process of developing symptoms, being diagnosed and offered a treatment, being cured or learning to live with a medical condition. The value of this type of data is therefore twofold: Firstly, it offers direct access to people's perspectives. Secondly, it might cover information that is not available elsewhere, including self-treatment or self-diagnoses. Named entity recognition and relation extraction are methods to structure information that is available in unstructured text. However, existing medical social media corpora focused on a comparably small set of entities and relations and particular domains, rather than putting the patient into the center of analyses. With this paper we contribute a corpus with a rich set of annotation layers following the motivation to uncover and model patients' journeys and experiences in more detail. We label 14 entity classes (incl. environmental factors, diagnostics, biochemical processes, patients' quality-of-life descriptions, pathogens, medical conditions, and treatments) and 20 relation classes (e.g., prevents, influences, interactions, causes) most of which have not been considered before for social media data. The publicly available dataset consists of 2,100 tweets with approx. 6,000 entity and 3,000 relation annotations. In a corpus analysis we find that over 80 % of documents contain relevant entities. Over 50 % of tweets express relations which we consider essential for uncovering patients' narratives about their journeys.

Abstract (translated)

URL

https://arxiv.org/abs/2204.09952

PDF

https://arxiv.org/pdf/2204.09952.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot