Paper Reading AI Learner

Re-defining Radiology Quality Assurance -- Artificial Intelligence -Based QA by Restricted Investigation of Unequal Scores

2022-05-02 02:56:28
Axel Wismuller, Larry Stockmaster, Ali Vosoughi

Abstract

There is an urgent need for streamlining radiology Quality Assurance (QA) programs to make them better and faster. Here, we present a novel approach, Artificial Intelligence (AI)-Based QUality Assurance by Restricted Investigation of Unequal Scores (AQUARIUS), for re-defining radiology QA, which reduces human effort by up to several orders of magnitude over existing approaches. AQUARIUS typically includes automatic comparison of AI-based image analysis with natural language processing (NLP) on radiology reports. Only the usually small subset of cases with discordant reads is subsequently reviewed by human experts. To demonstrate the clinical applicability of AQUARIUS, we performed a clinical QA study on Intracranial Hemorrhage (ICH) detection in 1936 head CT scans from a large academic hospital. Immediately following image acquisition, scans were automatically analyzed for ICH using a commercially available software (Aidoc, Tel Aviv, Israel). Cases rated positive for ICH by AI (ICH-AI+) were automatically flagged in radiologists' reading worklists, where flagging was randomly switched off with probability 50\%. Using AQUARIUS with NLP on final radiology reports and targeted expert neuroradiology review of only 29 discordantly classified cases reduced the human QA effort by 98.5\%, where we found a total of six non-reported true ICH+ cases, with radiologists' missed ICH detection rates of 0.52\% and 2.5\% for flagged and non-flagged cases, respectively. We conclude that AQUARIUS, by combining AI-based image analysis with NLP-based pre-selection of cases for targeted human expert review, can efficiently identify missed findings in radiology studies and significantly expedite radiology QA programs in a hybrid human-machine interoperability approach.

Abstract (translated)

URL

https://arxiv.org/abs/2205.00629

PDF

https://arxiv.org/pdf/2205.00629.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot