Paper Reading AI Learner

Relation-guided acoustic scene classification aided with event embeddings

2022-05-01 16:06:35
Yuanbo Hou, Bo Kang, Wout Van Hauwermeiren, Dick Botteldooren

Abstract

In real life, acoustic scenes and audio events are naturally correlated. Humans instinctively rely on fine-grained audio events as well as the overall sound characteristics to distinguish diverse acoustic scenes. Yet, most previous approaches treat acoustic scene classification (ASC) and audio event classification (AEC) as two independent tasks. A few studies on scene and event joint classification either use synthetic audio datasets that hardly match the real world, or simply use the multi-task framework to perform two tasks at the same time. Neither of these two ways makes full use of the implicit and inherent relation between fine-grained events and coarse-grained scenes. To this end, this paper proposes a relation-guided ASC (RGASC) model to further exploit and coordinate the scene-event relation for the mutual benefit of scene and event recognition. The TUT Urban Acoustic Scenes 2018 dataset (TUT2018) is annotated with pseudo labels of events by a simple and efficient audio-related pre-trained model PANN, which is one of the state-of-the-art AEC models. Then, a prior scene-event relation matrix is defined as the average probability of the presence of each event type in each scene class. Finally, the two-tower RGASC model is jointly trained on the real-life dataset TUT2018 for both scene and event classification. The following results are achieved. 1) RGASC effectively coordinates the true information of coarse-grained scenes and the pseudo information of fine-grained events. 2) The event embeddings learned from pseudo labels under the guidance of prior scene-event relations help reduce the confusion between similar acoustic scenes. 3) Compared with other (non-ensemble) methods, RGASC improves the scene classification accuracy on the real-life dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2205.00499

PDF

https://arxiv.org/pdf/2205.00499.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot