Paper Reading AI Learner

GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition

2022-04-12 03:37:21
Yang Li, Ji Chen, Fu Li, Boxun Fu, Hao Wu, Youshuo Ji, Yijin Zhou, Yi Niu, Guangming Shi, Wenming Zheng

Abstract

Previous electroencephalogram (EEG) emotion recognition relies on single-task learning, which may lead to overfitting and learned emotion features lacking generalization. In this paper, a graph-based multi-task self-supervised learning model (GMSS) for EEG emotion recognition is proposed. GMSS has the ability to learn more general representations by integrating multiple self-supervised tasks, including spatial and frequency jigsaw puzzle tasks, and contrastive learning tasks. By learning from multiple tasks simultaneously, GMSS can find a representation that captures all of the tasks thereby decreasing the chance of overfitting on the original task, i.e., emotion recognition task. In particular, the spatial jigsaw puzzle task aims to capture the intrinsic spatial relationships of different brain regions. Considering the importance of frequency information in EEG emotional signals, the goal of the frequency jigsaw puzzle task is to explore the crucial frequency bands for EEG emotion recognition. To further regularize the learned features and encourage the network to learn inherent representations, contrastive learning task is adopted in this work by mapping the transformed data into a common feature space. The performance of the proposed GMSS is compared with several popular unsupervised and supervised methods. Experiments on SEED, SEED-IV, and MPED datasets show that the proposed model has remarkable advantages in learning more discriminative and general features for EEG emotional signals.

Abstract (translated)

URL

https://arxiv.org/abs/2205.01030

PDF

https://arxiv.org/pdf/2205.01030.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot