Paper Reading AI Learner

Dynamic Sparse R-CNN

2022-05-04 14:56:25
Qinghang Hong, Fengming Liu, Dong Li, Ji Liu, Lu Tian, Yi Shan

Abstract

Sparse R-CNN is a recent strong object detection baseline by set prediction on sparse, learnable proposal boxes and proposal features. In this work, we propose to improve Sparse R-CNN with two dynamic designs. First, Sparse R-CNN adopts a one-to-one label assignment scheme, where the Hungarian algorithm is applied to match only one positive sample for each ground truth. Such one-to-one assignment may not be optimal for the matching between the learned proposal boxes and ground truths. To address this problem, we propose dynamic label assignment (DLA) based on the optimal transport algorithm to assign increasing positive samples in the iterative training stages of Sparse R-CNN. We constrain the matching to be gradually looser in the sequential stages as the later stage produces the refined proposals with improved precision. Second, the learned proposal boxes and features remain fixed for different images in the inference process of Sparse R-CNN. Motivated by dynamic convolution, we propose dynamic proposal generation (DPG) to assemble multiple proposal experts dynamically for providing better initial proposal boxes and features for the consecutive training stages. DPG thereby can derive sample-dependent proposal boxes and features for inference. Experiments demonstrate that our method, named Dynamic Sparse R-CNN, can boost the strong Sparse R-CNN baseline with different backbones for object detection. Particularly, Dynamic Sparse R-CNN reaches the state-of-the-art 47.2% AP on the COCO 2017 validation set, surpassing Sparse R-CNN by 2.2% AP with the same ResNet-50 backbone.

Abstract (translated)

URL

https://arxiv.org/abs/2205.02101

PDF

https://arxiv.org/pdf/2205.02101.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot