Paper Reading AI Learner

A Computational Inflection for Scientific Discovery

2022-05-04 11:36:54
Tom Hope, Doug Downey, Oren Etzioni, Daniel S. Weld, Eric Horvitz

Abstract

We stand at the foot of a significant inflection in the trajectory of scientific discovery. As society continues on its fast-paced digital transformation, so does humankind's collective scientific knowledge and discourse. We now read and write papers in digitized form, and a great deal of the formal and informal processes of science are captured digitally -- including papers, preprints and books, code and datasets, conference presentations, and interactions in social networks and communication platforms. The transition has led to the growth of a tremendous amount of information, opening exciting opportunities for computational models and systems that analyze and harness it. In parallel, exponential growth in data processing power has fueled remarkable advances in AI, including self-supervised neural models capable of learning powerful representations from large-scale unstructured text without costly human supervision. The confluence of societal and computational trends suggests that computer science is poised to ignite a revolution in the scientific process itself. However, the explosion of scientific data, results and publications stands in stark contrast to the constancy of human cognitive capacity. While scientific knowledge is expanding with rapidity, our minds have remained static, with severe limitations on the capacity for finding, assimilating and manipulating information. We propose a research agenda of task-guided knowledge retrieval, in which systems counter humans' bounded capacity by ingesting corpora of scientific knowledge and retrieving inspirations, explanations, solutions and evidence synthesized to directly augment human performance on salient tasks in scientific endeavors. We present initial progress on methods and prototypes, and lay out important opportunities and challenges ahead with computational approaches that have the potential to revolutionize science.

Abstract (translated)

URL

https://arxiv.org/abs/2205.02007

PDF

https://arxiv.org/pdf/2205.02007.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot