Paper Reading AI Learner

Text Detection on Technical Drawings for the Digitization of Brown-field Processes

2022-05-05 13:59:18
Tobias Schlagenhauf, Markus Netzer, Jan Hillinger

Abstract

This paper addresses the issue of autonomously detecting text on technical drawings. The detection of text on technical drawings is a critical step towards autonomous production machines, especially for brown-field processes, where no closed CAD-CAM solutions are available yet. Automating the process of reading and detecting text on technical drawings reduces the effort for handling inefficient media interruptions due to paper-based processes, which are often todays quasi-standard in brown-field processes. However, there are no reliable methods available yet to solve the issue of automatically detecting text on technical drawings. The unreliable detection of the contents on technical drawings using classical detection and object character recognition (OCR) tools is mainly due to the limited number of technical drawings and the captcha-like structure of the contents. Text is often combined with unknown symbols and interruptions by lines. Additionally, due to intellectual property rights and technical know-how issues, there are no out-of-the box training datasets available in the literature to train such models. This paper combines a domain knowledge-based generator to generate realistic technical drawings with a state-of-the-art object detection model to solve the issue of detecting text on technical drawings. The generator yields artificial technical drawings in a large variety and can be considered as a data augmentation generator. These artificial drawings are used for training, while the model is tested on real data. The authors show that artificially generated data of technical drawings improve the detection quality with an increasing number of drawings.

Abstract (translated)

URL

https://arxiv.org/abs/2205.02659

PDF

https://arxiv.org/pdf/2205.02659.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot