Paper Reading AI Learner

Anomaly Detection in Intra-Vehicle Networks

2022-05-07 03:38:26
Ajeet Kumar Dwivedi

Abstract

The progression of innovation and technology and ease of inter-connectivity among networks has allowed us to evolve towards one of the promising areas, the Internet of Vehicles. Nowadays, modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks. However, a primary challenge in the automotive industry is to make the vehicle safe and reliable; particularly with the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically. Practically every vehicle uses the universal Controller Area Network (CAN) bus protocol for the communication between electronic control units to transmit key vehicle functionality and messages related to driver safety. The CAN bus system, although its critical significance, lacks the key feature of any protocol authentication and authorization. Resulting in compromises of CAN bus security leads to serious issues to both car and driver safety. This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks on in-vehicle networks. Multiple Artificial Intelligence (AI) algorithms are employed to provide recognition of known potential cyber-attacks based on messages, timestamps, and data packets traveling through the CAN. The main objective of this paper is to accurately detect cyberattacks by considering time-series features and attack frequency. The majority of the evaluated AI algorithms, when considering attack frequency, correctly identify known attacks with remarkable accuracy of more than 99%. However, these models achieve approximately 92% to 97% accuracy when timestamps are not taken into account. Long Short Term Memory (LSTM), Xgboost, and SVC have proved to the well-performing classifiers.

Abstract (translated)

URL

https://arxiv.org/abs/2205.03537

PDF

https://arxiv.org/pdf/2205.03537.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot