Paper Reading AI Learner

Social Inclusion in Curated Contexts: Insights from Museum Practices

2022-05-10 22:22:12
Han-Yin Huang, Cynthia C. S. Liem

Abstract

Artificial intelligence literature suggests that minority and fragile communities in society can be negatively impacted by machine learning algorithms due to inherent biases in the design process, which lead to socially exclusive decisions and policies. Faced with similar challenges in dealing with an increasingly diversified audience, the museum sector has seen changes in theory and practice, particularly in the areas of representation and meaning-making. While rarity and grandeur used to be at the centre stage of the early museum practices, folk life and museums' relationships with the diverse communities they serve become a widely integrated part of the contemporary practices. These changes address issues of diversity and accessibility in order to offer more socially inclusive services. Drawing on these changes and reflecting back on the AI world, we argue that the museum experience provides useful lessons for building AI with socially inclusive approaches, especially in situations in which both a collection and access to it will need to be curated or filtered, as frequently happens in search engines, recommender systems and digital libraries. We highlight three principles: (1) Instead of upholding the value of neutrality, practitioners are aware of the influences of their own backgrounds and those of others on their work. By not claiming to be neutral but practising cultural humility, the chances of addressing potential biases can be increased. (2) There should be room for situational interpretation beyond the stages of data collection and machine learning. Before applying models and predictions, the contexts in which relevant parties exist should be taken into account. (3) Community participation serves the needs of communities and has the added benefit of bringing practitioners and communities together.

Abstract (translated)

URL

https://arxiv.org/abs/2205.05192

PDF

https://arxiv.org/pdf/2205.05192.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot