Paper Reading AI Learner

An Approach for Automatic Construction of an Algorithmic Knowledge Graph from Textual Resources

2022-05-13 18:59:23
Jyotima Patel, Biswanath Dutta

Abstract

There is enormous growth in various fields of research. This development is accompanied by new problems. To solve these problems efficiently and in an optimized manner, algorithms are created and described by researchers in the scientific literature. Scientific algorithms are vital for understanding and reusing existing work in numerous domains. However, algorithms are generally challenging to find. Also, the comparison among similar algorithms is difficult because of the disconnected documentation. Information about algorithms is mostly present in websites, code comments, and so on. There is an absence of structured metadata to portray algorithms. As a result, sometimes redundant or similar algorithms are published, and the researchers build them from scratch instead of reusing or expanding upon the already existing algorithm. In this paper, we introduce an approach for automatically developing a knowledge graph (KG) for algorithmic problems from unstructured data. Because it captures information more clearly and extensively, an algorithm KG will give additional context and explainability to the algorithm metadata.

Abstract (translated)

URL

https://arxiv.org/abs/2205.06854

PDF

https://arxiv.org/pdf/2205.06854.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot