Paper Reading AI Learner

Deep transfer learning for image classification: a survey

2022-05-20 00:03:39
Jo Plested, Tom Gedeon

Abstract

Deep neural networks such as convolutional neural networks (CNNs) and transformers have achieved many successes in image classification in recent years. It has been consistently demonstrated that best practice for image classification is when large deep models can be trained on abundant labelled data. However there are many real world scenarios where the requirement for large amounts of training data to get the best performance cannot be met. In these scenarios transfer learning can help improve performance. To date there have been no surveys that comprehensively review deep transfer learning as it relates to image classification overall. However, several recent general surveys of deep transfer learning and ones that relate to particular specialised target image classification tasks have been published. We believe it is important for the future progress in the field that all current knowledge is collated and the overarching patterns analysed and discussed. In this survey we formally define deep transfer learning and the problem it attempts to solve in relation to image classification. We survey the current state of the field and identify where recent progress has been made. We show where the gaps in current knowledge are and make suggestions for how to progress the field to fill in these knowledge gaps. We present a new taxonomy of the applications of transfer learning for image classification. This taxonomy makes it easier to see overarching patterns of where transfer learning has been effective and, where it has failed to fulfill its potential. This also allows us to suggest where the problems lie and how it could be used more effectively. We show that under this new taxonomy, many of the applications where transfer learning has been shown to be ineffective or even hinder performance are to be expected when taking into account the source and target datasets and the techniques used.

Abstract (translated)

URL

https://arxiv.org/abs/2205.09904

PDF

https://arxiv.org/pdf/2205.09904.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot