Paper Reading AI Learner

InDistill: Transferring Knowledge From Pruned Intermediate Layers

2022-05-20 07:40:09
Ioannis Sarridis, Christos Koutlis, Symeon Papadopoulos, Ioannis Kompatsiaris

Abstract

Deploying deep neural networks on hardware with limited resources, such as smartphones and drones, constitutes a great challenge due to their computational complexity. Knowledge distillation approaches aim at transferring knowledge from a large model to a lightweight one, also known as teacher and student respectively, while distilling the knowledge from intermediate layers provides an additional supervision to that task. The capacity gap between the models, the information encoding that collapses its architectural alignment, and the absence of appropriate learning schemes for transferring multiple layers restrict the performance of existing methods. In this paper, we propose a novel method, termed InDistill, that can drastically improve the performance of existing single-layer knowledge distillation methods by leveraging the properties of channel pruning to both reduce the capacity gap between the models and retain the architectural alignment. Furthermore, we propose a curriculum learning based scheme for enhancing the effectiveness of transferring knowledge from multiple intermediate layers. The proposed method surpasses state-of-the-art performance on three benchmark image datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10003

PDF

https://arxiv.org/pdf/2205.10003.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot