Paper Reading AI Learner

Do it Like the Doctor: How We Can Design a Model That Uses Domain Knowledge to Diagnose Pneumothorax

2022-05-24 15:42:43
Glen Smith, Qiao Zhang, Christopher MacLellan

Abstract

Computer-aided diagnosis for medical imaging is a well-studied field that aims to provide real-time decision support systems for physicians. These systems attempt to detect and diagnose a plethora of medical conditions across a variety of image diagnostic technologies including ultrasound, x-ray, MRI, and CT. When designing AI models for these systems, we are often limited by little training data, and for rare medical conditions, positive examples are difficult to obtain. These issues often cause models to perform poorly, so we needed a way to design an AI model in light of these limitations. Thus, our approach was to incorporate expert domain knowledge into the design of an AI model. We conducted two qualitative think-aloud studies with doctors trained in the interpretation of lung ultrasound diagnosis to extract relevant domain knowledge for the condition Pneumothorax. We extracted knowledge of key features and procedures used to make a diagnosis. With this knowledge, we employed knowledge engineering concepts to make recommendations for an AI model design to automatically diagnose Pneumothorax.

Abstract (translated)

URL

https://arxiv.org/abs/2205.12159

PDF

https://arxiv.org/pdf/2205.12159.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot