Paper Reading AI Learner

SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned Distribution Perturbation

2022-05-26 05:11:58
Yuan Hu, Lei Chen, Zhibin Wang, Hao Li

Abstract

Data-driven approaches for medium-range weather forecasting are recently shown extraordinarily promising for ensemble forecasting for their fast inference speed compared to traditional numerical weather prediction (NWP) models, but their forecast accuracy can hardly match the state-of-the-art operational ECMWF Integrated Forecasting System (IFS) model. Previous data-driven attempts achieve ensemble forecast using some simple perturbation methods, like initial condition perturbation and Monte Carlo dropout. However, they mostly suffer unsatisfactory ensemble performance, which is arguably attributed to the sub-optimal ways of applying perturbation. We propose a Swin Transformer-based Variational Recurrent Neural Network (SwinVRNN), which is a stochastic weather forecasting model combining a SwinRNN predictor with a perturbation module. SwinRNN is designed as a Swin Transformer-based recurrent neural network, which predicts future states deterministically. Furthermore, to model the stochasticity in prediction, we design a perturbation module following the Variational Auto-Encoder paradigm to learn multivariate Gaussian distributions of a time-variant stochastic latent variable from data. Ensemble forecasting can be easily achieved by perturbing the model features leveraging noise sampled from the learned distribution. We also compare four categories of perturbation methods for ensemble forecasting, i.e. fixed distribution perturbation, learned distribution perturbation, MC dropout, and multi model ensemble. Comparisons on WeatherBench dataset show the learned distribution perturbation method using our SwinVRNN model achieves superior forecast accuracy and reasonable ensemble spread due to joint optimization of the two targets. More notably, SwinVRNN surpasses operational IFS on surface variables of 2-m temperature and 6-hourly total precipitation at all lead times up to five days.

Abstract (translated)

URL

https://arxiv.org/abs/2205.13158

PDF

https://arxiv.org/pdf/2205.13158.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot