Paper Reading AI Learner

Efficient Policy Iteration for Robust Markov Decision Processes via Regularization

2022-05-28 04:05:20
Navdeep Kumar, Kfir Levy, Kaixin Wang, Shie Mannor

Abstract

Robust Markov decision processes (MDPs) provide a general framework to model decision problems where the system dynamics are changing or only partially known. Recent work established the equivalence between \texttt{s} rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs. However, there lacks a clear understanding of the policy improvement step. For example, we know the greedy policy can be stochastic but have little clue how each action affects this greedy policy. In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators. We find that the greedy policy is closely related to some combination of the top $k$ actions, which provides a novel characterization of its stochasticity. The exact nature of the combination depends on the shape of the uncertainty set. Furthermore, our results allow us to efficiently compute the policy improvement step by a simple binary search, without turning to an external optimization subroutine. Moreover, for $L_1, L_2$, and $L_\infty$ robust MDPs, we can even get rid of the binary search and evaluate the optimal robust Bellman operators exactly. Our work greatly extends existing results on solving \texttt{s}-rectangular $L_p$ robust MDPs via regularized policy iteration and can be readily adapted to sample-based model-free algorithms.

Abstract (translated)

URL

https://arxiv.org/abs/2205.14327

PDF

https://arxiv.org/pdf/2205.14327.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot