Paper Reading AI Learner

CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning

2022-05-30 13:20:26
Di Jin, Luzhi Wang, Yizhen Zheng, Xiang Li, Fei Jiang, Wei Lin, Shirui Pan

Abstract

Graph similarity learning refers to calculating the similarity score between two graphs, which is required in many realistic applications, such as visual tracking, graph classification, and collaborative filtering. As most of the existing graph neural networks yield effective graph representations of a single graph, little effort has been made for jointly learning two graph representations and calculating their similarity score. In addition, existing unsupervised graph similarity learning methods are mainly clustering-based, which ignores the valuable information embodied in graph pairs. To this end, we propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning in order to calculate the similarity between any two input graph objects. Specifically, we generate two augmented views for each graph in a pair respectively. Then, we employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning. The former is resorted to strengthen the consistency of node representations in two views. The latter is utilized to identify node differences between different graphs. Finally, we transform node representations into graph-level representations via pooling operations for graph similarity computation. We have evaluated CGMN on eight real-world datasets, and the experiment results show that the proposed new approach is superior to the state-of-the-art methods in graph similarity learning downstream tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2205.15083

PDF

https://arxiv.org/pdf/2205.15083.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot