Paper Reading AI Learner

Multi-task Optimization Based Co-training for Electricity Consumption Prediction

2022-05-31 10:06:09
Hui Song, A. K. Qin, Chenggang Yan

Abstract

Real-world electricity consumption prediction may involve different tasks, e.g., prediction for different time steps ahead or different geo-locations. These tasks are often solved independently without utilizing some common problem-solving knowledge that could be extracted and shared among these tasks to augment the performance of solving each task. In this work, we propose a multi-task optimization (MTO) based co-training (MTO-CT) framework, where the models for solving different tasks are co-trained via an MTO paradigm in which solving each task may benefit from the knowledge gained from when solving some other tasks to help its solving process. MTO-CT leverages long short-term memory (LSTM) based model as the predictor where the knowledge is represented via connection weights and biases. In MTO-CT, an inter-task knowledge transfer module is designed to transfer knowledge between different tasks, where the most helpful source tasks are selected by using the probability matching and stochastic universal selection, and evolutionary operations like mutation and crossover are performed for reusing the knowledge from selected source tasks in a target task. We use electricity consumption data from five states in Australia to design two sets of tasks at different scales: a) one-step ahead prediction for each state (five tasks) and b) 6-step, 12-step, 18-step, and 24-step ahead prediction for each state (20 tasks). The performance of MTO-CT is evaluated on solving each of these two sets of tasks in comparison to solving each task in the set independently without knowledge sharing under the same settings, which demonstrates the superiority of MTO-CT in terms of prediction accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2205.15663

PDF

https://arxiv.org/pdf/2205.15663.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot