Paper Reading AI Learner

Improving Knowledge Graph Embedding via Iterative Self-Semantic Knowledge Distillation

2022-06-07 01:49:22
Zhehui Zhou, Defang Chen, Can Wang, Yan Feng, Chun Chen

Abstract

Knowledge graph embedding (KGE) has been intensively investigated for link prediction by projecting entities and relations into continuous vector spaces. Current popular high-dimensional KGE methods obtain quite slight performance gains while require enormous computation and memory costs. In contrast to high-dimensional KGE models, training low-dimensional models is more efficient and worthwhile for better deployments to practical intelligent systems. However, the model expressiveness of semantic information in knowledge graphs (KGs) is highly limited in the low dimension parameter space. In this paper, we propose iterative self-semantic knowledge distillation strategy to improve the KGE model expressiveness in the low dimension space. KGE model combined with our proposed strategy plays the teacher and student roles alternatively during the whole training process. Specifically, at a certain iteration, the model is regarded as a teacher to provide semantic information for the student. At next iteration, the model is regard as a student to incorporate the semantic information transferred from the teacher. We also design a novel semantic extraction block to extract iteration-based semantic information for the training model self-distillation. Iteratively incorporating and accumulating iteration-based semantic information enables the low-dimensional model to be more expressive for better link prediction in KGs. There is only one model during the whole training, which alleviates the increase of computational expensiveness and memory requirements. Furthermore, the proposed strategy is model-agnostic and can be seamlessly combined with other KGE models. Consistent and significant performance gains in experimental evaluations on four standard datasets demonstrate the effectiveness of the proposed self-distillation strategy.

Abstract (translated)

URL

https://arxiv.org/abs/2206.02963

PDF

https://arxiv.org/pdf/2206.02963.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot