Paper Reading AI Learner

Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics

2022-06-07 15:35:10
Aylin Caliskan, Pimparkar Parth Ajay, Tessa Charlesworth, Robert Wolfe, Mahzarin R. Banaji

Abstract

The statistical regularities in language corpora encode well-known social biases into word embeddings. Here, we focus on gender to provide a comprehensive analysis of group-based biases in widely-used static English word embeddings trained on internet corpora (GloVe 2014, fastText 2017). Using the Single-Category Word Embedding Association Test, we demonstrate the widespread prevalence of gender biases that also show differences in: (1) frequencies of words associated with men versus women; (b) part-of-speech tags in gender-associated words; (c) semantic categories in gender-associated words; and (d) valence, arousal, and dominance in gender-associated words. First, in terms of word frequency: we find that, of the 1,000 most frequent words in the vocabulary, 77% are more associated with men than women, providing direct evidence of a masculine default in the everyday language of the English-speaking world. Second, turning to parts-of-speech: the top male-associated words are typically verbs (e.g., fight, overpower) while the top female-associated words are typically adjectives and adverbs (e.g., giving, emotionally). Gender biases in embeddings also permeate parts-of-speech. Third, for semantic categories: bottom-up, cluster analyses of the top 1,000 words associated with each gender. The top male-associated concepts include roles and domains of big tech, engineering, religion, sports, and violence; in contrast, the top female-associated concepts are less focused on roles, including, instead, female-specific slurs and sexual content, as well as appearance and kitchen terms. Fourth, using human ratings of word valence, arousal, and dominance from a ~20,000 word lexicon, we find that male-associated words are higher on arousal and dominance, while female-associated words are higher on valence.

Abstract (translated)

URL

https://arxiv.org/abs/2206.03390

PDF

https://arxiv.org/pdf/2206.03390.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot