Paper Reading AI Learner

Learning to Efficiently Propagate for Reasoning on Knowledge Graphs

2022-06-07 01:01:36
Zhaocheng Zhu, Xinyu Yuan, Louis-Pascal Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang

Abstract

Path-based methods are more appealing solutions than embedding methods for knowledge graph reasoning, due to their interpretability and generalization ability to unseen graphs. However, path-based methods usually suffer from the problem of scalability, as the time complexity grows exponentially w.r.t. the length of paths. While recent methods compute reasoning paths with the Bellman-Ford algorithm in polynomial time, the time and memory cost remains very high, as they need to propagate through all the nodes and edges in the graph. In this paper, we propose A*Net, an efficient model for path-based reasoning on knowledge graphs. Inspired by the classical A* algorithm for shortest path problems, our A*Net prioritizes important nodes and edges at each propagation step, to reduce the time and memory footprint. Unlike the classical A* algorithm that uses a heuristic function, we propose to learn the priority function for each node to capture the complex semantics in knowledge graphs. The priority function and the propagation steps are jointly optimized through backpropagation. Experiments on both transductive and inductive knowledge graph reasoning benchmarks show that A*Net achieves competitive performance with existing state-of-the-art path-based methods, and meanwhile reduces the number of messages, the time and the memory cost up to 7.2$\times$, 3.4$\times$ and 4.9$\times$ respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2206.04798

PDF

https://arxiv.org/pdf/2206.04798.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot