Paper Reading AI Learner

Plug-and-Play Pseudo Label Correction Network for Unsupervised Person Re-identification

2022-06-14 05:59:37
Tianyi Yan, Kuan Zhu, Haiyun guo, Guibo Zhu, Ming Tang, Jinqiao Wang

Abstract

Clustering-based methods, which alternate between the generation of pseudo labels and the optimization of the feature extraction network, play a dominant role in both unsupervised learning (USL) and unsupervised domain adaptive (UDA) person re-identification (Re-ID). To alleviate the adverse effect of noisy pseudo labels, the existing methods either abandon unreliable labels or refine the pseudo labels via mutual learning or label propagation. However, a great many erroneous labels are still accumulated because these methods mostly adopt traditional unsupervised clustering algorithms which rely on certain assumptions on data distribution and fail to capture the distribution of complex real-world data. In this paper, we propose the plug-and-play graph-based pseudo label correction network (GLC) to refine the pseudo labels in the manner of supervised clustering. GLC is trained to perceive the varying data distribution at each epoch of the self-training with the supervision of initial pseudo labels generated by any clustering method. It can learn to rectify the initial noisy labels by means of the relationship constraints between samples on the k Nearest Neighbor (kNN) graph and early-stop training strategy. Specifically, GLC learns to aggregate node features from neighbors and predict whether the nodes should be linked on the graph. Besides, GLC is optimized with 'early stop' before the noisy labels are severely memorized to prevent overfitting to noisy pseudo labels. Consequently, GLC improves the quality of pseudo labels though the supervision signals contain some noise, leading to better Re-ID performance. Extensive experiments in USL and UDA person Re-ID on Market-1501 and MSMT17 show that our method is widely compatible with various clustering-based methods and promotes the state-of-the-art performance consistently.

Abstract (translated)

URL

https://arxiv.org/abs/2206.06607

PDF

https://arxiv.org/pdf/2206.06607.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot