Paper Reading AI Learner

From a few Accurate 2D Correspondences to 3D Point Clouds

2022-06-13 16:15:53
Trung-Kien Le, Ping Li

Abstract

Key points, correspondences, projection matrices, point clouds and dense clouds are the skeletons in image-based 3D reconstruction, of which point clouds have the important role in generating a realistic and natural model for a 3D reconstructed object. To achieve a good 3D reconstruction, the point clouds must be almost everywhere in the surface of the object. In this article, with a main purpose to build the point clouds covering the entire surface of the object, we propose a new feature named a geodesic feature or geo-feature. Based on the new geo-feature, if there are several (given) initial world points on the object's surface along with all accurately estimated projection matrices, some new world points on the geodesics connecting any two of these given world points will be reconstructed. Then the regions on the surface bordering by these initial world points will be covered by the point clouds. Thus, if the initial world points are around the surface, the point clouds will cover the entire surface. This article proposes a new method to estimate the world points and projection matrices from their correspondences. This method derives the closed-form and iterative solutions for the world points and projection matrices and proves that when the number of world points is less than seven and the number of images is at least five, the proposed solutions are global optimal. We propose an algorithm named World points from their Correspondences (WPfC) to estimate the world points and projection matrices from their correspondences, and another algorithm named Creating Point Clouds (CrPC) to create the point clouds from the world points and projection matrices given by the first algorithm.

Abstract (translated)

URL

https://arxiv.org/abs/2206.08749

PDF

https://arxiv.org/pdf/2206.08749.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot