Paper Reading AI Learner

Predicting Hate Intensity of Twitter Conversation Threads

2022-06-16 18:51:36
Qing Meng, Tharun Suresh, Roy Ka-Wei Lee, Tanmoy Chakraborty

Abstract

Tweets are the most concise form of communication in online social media, wherein a single tweet has the potential to make or break the discourse of the conversation. Online hate speech is more accessible than ever, and stifling its propagation is of utmost importance for social media companies and users for congenial communication. Most of the research barring a recent few has focused on classifying an individual tweet regardless of the tweet thread/context leading up to that point. One of the classical approaches to curb hate speech is to adopt a reactive strategy after the hate speech postage. The ex-post facto strategy results in neglecting subtle posts that do not show the potential to instigate hate speech on their own but may portend in the subsequent discussion ensuing in the post's replies. In this paper, we propose DRAGNET++, which aims to predict the intensity of hatred that a tweet can bring in through its reply chain in the future. It uses the semantic and propagating structure of the tweet threads to maximize the contextual information leading up to and the fall of hate intensity at each subsequent tweet. We explore three publicly available Twitter datasets -- Anti-Racism contains the reply tweets of a collection of social media discourse on racist remarks during US political and Covid-19 background; Anti-Social presents a dataset of 40 million tweets amidst the COVID-19 pandemic on anti-social behaviours; and Anti-Asian presents Twitter datasets collated based on anti-Asian behaviours during COVID-19 pandemic. All the curated datasets consist of structural graph information of the Tweet threads. We show that DRAGNET++ outperforms all the state-of-the-art baselines significantly. It beats the best baseline by an 11\% margin on the Person correlation coefficient and a decrease of 25\% on RMSE for the Anti-Racism dataset with a similar performance on the other two datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2206.08406

PDF

https://arxiv.org/pdf/2206.08406.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot